Optimizando el consumo energético: Estratégias para un futuro verde en la modernización portuaria

¿Por Qué Sostenibilidad Portuaria?

Reconocer el impacto de los puertos en emisiones globales

Los puertos representan el **3% de las emisiones globales**, contribuyendo significativamente al cambio climático.

Identificar los impactos negativos en comunidades y medio ambiente

Los puertos afectan negativamente la calidad del aire, generan ruido y afectan a las **comunidades cercanas**.

Destacar el rol de los puertos en la descarbonización marítima

Los puertos son actores clave para liderar la descarbonización del transporte marítimo, alineándose con el Acuerdo de París y el ODS 13.

Objetivos generales Reducir contaminación, ruido y consumo energético en puertos

Implementar medidas para disminuir las emisiones contaminantes, minimizar el ruido ambiental y optimizar el consumo energético en las instalaciones portuarias.

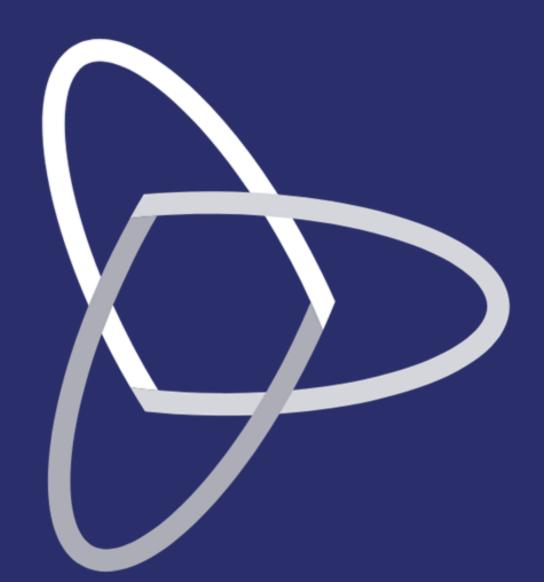
Garantizar suministro energético confiable y basado en renovables

Asegurar una provisión estable de energía mediante fuentes renovables que apoyen la sostenibilidad y la independencia energética de los puertos.

Optimizar la eficiencia operativa y promover sinergias entre sistemas

Mejorar la productividad y coordinación de los procesos portuarios para maximizar recursos y generar beneficios económicos y ambientales para los gestores.

Marcos Globales de Sostenibilidad


Principales acuerdos y objetivos internacionales para la reducción de emisiones y acción climática

Acuerdo de París

Mantener el calentamiento global por debajo de 1.5°C para limitar el cambio climático severo.

Estrategia GHG de IMO

Meta de alcanzar emisiones net-zero para 2050 con reducción intermedia del 20% de emisiones para 2030.

Objetivos de Desarrollo Sostenible (ODS)

Enfoque en ODS 7 (Energía asequible y limpia) y ODS 13 (Acción climática) para guiar la sostenibilidad global.

Iniciativas Regionales Relevantes

Programas y acuerdos que promueven la sostenibilidad en el transporte marítimo

EU Fit for 55

Incluye esquema ETS y regulación FuelEU para transporte marítimo, promoviendo reducción de emisiones

Programas que impulsan financiamiento y adopción tecnológica en transporte marítimo

Declaración de Clydebank

Establece corredores verdes para fomentar el transporte marítimo sostenible

Equipos Eléctricos para Puertos

Implementar grúas eléctricas en puertos

Ejemplo destacado es la grúa Konecranes E-VER, que optimiza operaciones portuarias con tecnología eléctrica avanzada.

Utilizar vehículos automatizados y montacargas eléctricos

Incorporación de vehículos automatizados guiados (AGVs) y montacargas eléctricos para mejorar la eficiencia y reducir emisiones en tareas portuarias.

Reducir emisiones contaminantes en un 50%

Disminución significativa del 50% en emisiones de CO2, NOx y material particulado (PM) mediante la adopción de equipos eléctricos en puertos.

Conectar buques a la red eléctrica durante el atraque

Permite suministrar energía eléctrica a los buques mientras están atracados, eliminando la necesidad de motores auxiliares a bordo.

Reducir emisiones en un 90% con OPS

La utilización de OPS disminuye significativamente las emisiones contaminantes generadas por los buques durante su estancia en puerto, contribuyendo a la sostenibilidad ambiental.

Cumplir con la regulación EU Fit for 55

Implementar OPS asegura el cumplimiento de las normativas europeas que exigen una reducción sustancial de emisiones en el sector marítimo.

Cumplir con estándares IEC/ISO/IEEE 80005 para interoperabilidad

El uso de estándares internacionales garantiza la compatibilidad y seguridad en las conexiones eléctricas entre buques y puertos, facilitando la interoperabilidad.

Onshore Power Supply (OPS) para reducción de emisiones y cumplimiento normativo

Implementación de transporte eléctrico para reducir emisiones en la cadena logística

Incorporar camiones eléctricos en el transporte terrestre

Ejemplos destacados incluyen Tesla Semi y BYD, que representan avances tecnológicos en vehículos eléctricos para carga en el hinterland.

Adoptar trenes eléctricos para transporte de carga

Los trenes eléctricos mejoran la eficiencia y sostenibilidad del transporte de mercancías, contribuyendo a la reducción de emisiones en el hinterland.

Reducir emisiones entre un 20% y 30% con electrificación

La implementación de tecnologías eléctricas en camiones y trenes permite disminuir significativamente las emisiones contaminantes, alineándose con objetivos ambientales.

Uso de digital twins

Monitoreo en tiempo real para mejorar la gestión portuaria y anticipar fallos.

Inteligencia Artificial para optimización

Optimización de rutas y operaciones portuarias mediante IA para aumentar eficiencia.

Reducción del consumo energético

Disminución del consumo energético en un 20% aplicada a operaciones portuarias.

Solar en Puertos

Energía solar aplicada a infraestructuras portuarias para sostenibilidad energética

Instalar paneles solares en almacenes y edificios portuarios

Implementación de sistemas fotovoltaicos en las estructuras portuarias para aprovechar energía renovable y reducir la dependencia de fuentes convencionales.

Contar con capacidad instalada entre 1 y 10 MW

La potencia instalada de los sistemas solares en puertos varía desde 1 hasta 10 megavatios, permitiendo una generación significativa de energía limpia.

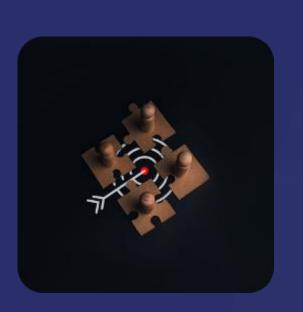
Cubrir hasta un 40% de la demanda energética del puerto

La energía solar puede abastecer una parte considerable del consumo eléctrico portuario, optimizando costos y mejorando la eficiencia energética.

Financiamiento de la Unión Europea a través de Horizon

El proyecto cuenta con apoyo económico de la Unión Europea mediante el programa Horizon, facilitando la implementación y expansión de la energía solar en puertos.

Energía Eólica Portuaria


Instalar turbinas de eje vertical en puertos

Implementar turbinas de eje vertical específicamente diseñadas para espacios portuarios, optimizando el uso del espacio y la eficiencia energética en áreas costeras.

Complementar la generación solar para estabilidad energética

Combinar la energía eólica con la solar para asegurar una fuente de energía más estable y confiable, mejorando la resiliencia del suministro en instalaciones portuarias.

Reducir emisiones de CO2 entre 20% y 30%

Contribuir a la reducción significativa de emisiones de dióxido de carbono, alcanzando disminuciones entre un 20% y un 30%, apoyando objetivos de sostenibilidad y mitigación climática.

Baterías para Estabilidad Energética

01

02

03

04

Implementar baterías de litio con capacidad entre 5 y 50 MWh

Utilizar baterías industriales de alta capacidad para almacenar energía, facilitando la gestión eficiente del suministro en puertos.

Gestionar picos de demanda energética

Optimizar el uso de energía almacenada para responder eficazmente a las variaciones y picos en la demanda de los puertos.

Incrementar la autosuficiencia energética en un 40%

Mejorar la independencia energética mediante sistemas de almacenamiento que reduzcan la dependencia de fuentes externas.

Apoyar financiamiento con la iniciativa GreenVoyage2050

Contar con respaldo financiero para la implementación de baterías a través de la iniciativa internacional GreenVoyage2050.

Hidrógeno para Descarbonización

Hidrógeno verde como solución clave para la sostenibilidad portuaria

Implementar electrolizadores con energía renovable

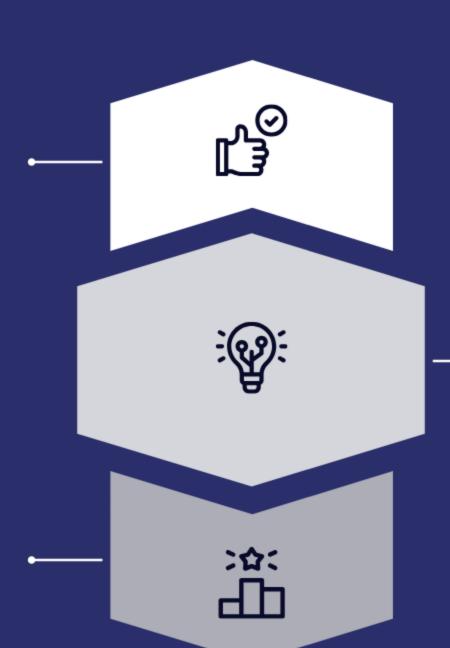
Utilizar electrolizadores alimentados exclusivamente por fuentes renovables para producir hidrógeno verde, garantizando un proceso sostenible y libre de emisiones.

Usar hidrógeno como combustible limpio en puertos

Emplear hidrógeno verde para alimentar buques y vehículos portuarios, reduciendo significativamente la huella de carbono en operaciones marítimas y logísticas.

Apoyar el objetivo net-zero de IMO para 2050

Contribuir al cumplimiento del compromiso internacional de la Organización Marítima Internacional (IMO) para alcanzar emisiones netas cero en el sector marítimo para el año 2050.


Recuperación de Calor Residual

Captura de calor en operaciones portuarias

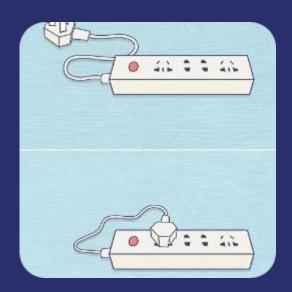
Captura de calor generado durante las operaciones portuarias para su aprovechamiento posterior.

Reutilización para calefacción o enfriamiento

El calor residual se reutiliza en procesos de calefacción o enfriamiento, optimizando recursos energéticos.

Recuperación energética del 20% al 30%

Se logra una recuperación energética en un rango entre el 20% y 30%, aumentando la eficiencia del sistema.


Modelos Meteorológicos para Optimizar Energías Renovables

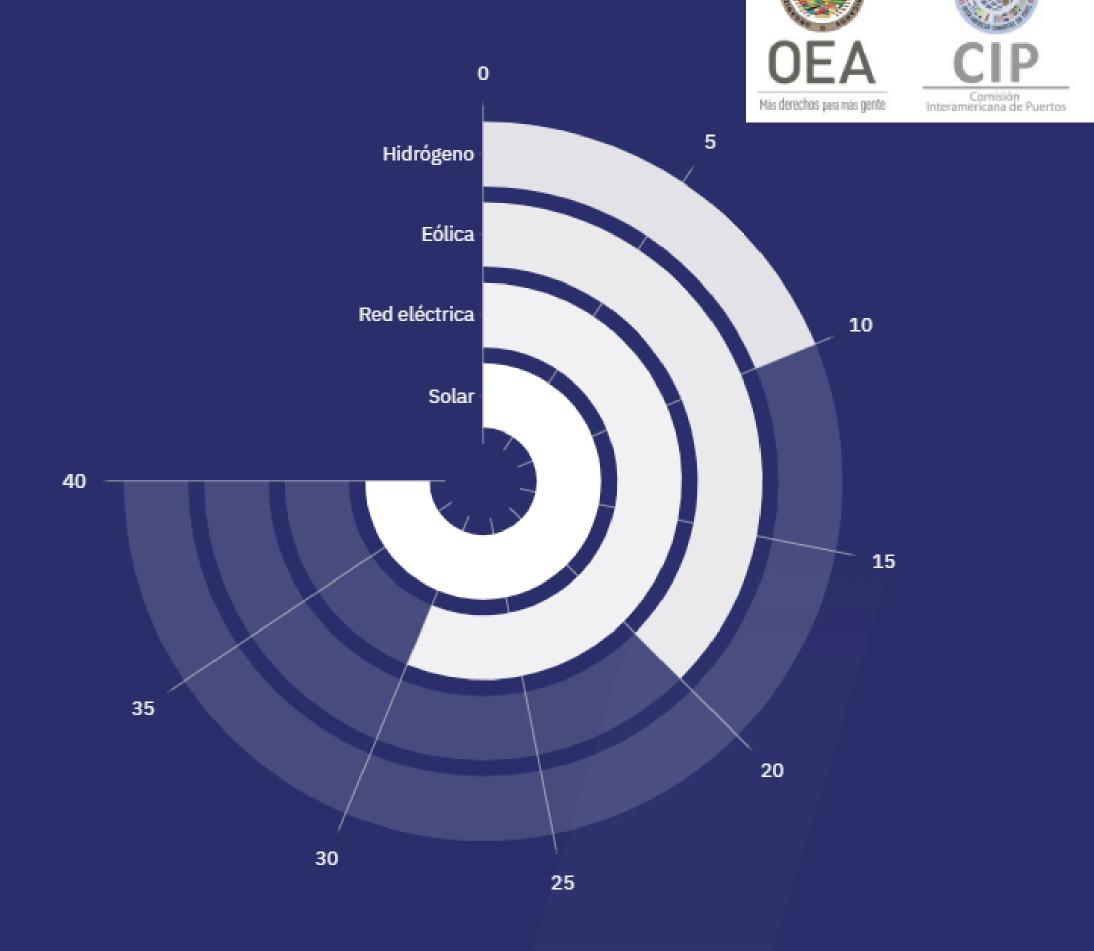
Aplicación de IA para mejorar la producción y confiabilidad en energía solar y eólica

Aplicación de modelos de IA para pronóstico climático

Integración de inteligencia artificial para anticipar condiciones climáticas, facilitando una gestión eficiente de recursos renovables y minimizando riesgos operativos.

Optimización de la producción solar y eólica

Uso de datos
meteorológicos precisos
para maximizar la
generación energética,
ajustando la operación
según variaciones
climáticas y mejorando el
rendimiento.


Mejora de confiabilidad energética entre 10% y 15%

Incremento comprobado en la estabilidad del suministro energético mediante modelos predictivos, asegurando una integración más segura y constante de renovables.

Mezcla Energética Puerto (2030)

Transición hacia una matriz energética renovable y diversificada

Corto plazo

- Auditorías energéticas y pilotos OPS
- Realización de auditorías energéticas para identificar oportunidades de eficiencia y pruebas piloto de Sistemas de Alimentación a Tierra (OPS) para reducir emisiones en puertos.

Auditorías an

Hoja de Ruta Sostenible

Fases claras para la transición energética en puertos vinculadas a IMO y objetivos europeos

Mediano plazo

- Implementación de hidrógeno verde y redes inteligentes
- Despliegue de tecnologías innovadoras como el hidrógeno verde y redes inteligentes para optimizar la gestión energética y avanzar en la descarbonización portuaria.

Largo plazo

- 60–90% energías renovables en matriz energética
- Objetivo estratégico de alcanzar entre 60 y 90% de energías renovables en la matriz energética portuaria alineada con las metas de la IMO y los objetivos europeos.

Gracias

